LEADER TIME SRL

PRODUCT SPECIFICATION

MONO LCD MODULE MODEL: LT-1602SLIM-601

< ◊ > Preliminary Specification

< ◆ > Finally Specification

CUSTOMER'S APPROVAL								
CUSTOMER:								
SIGI	NATURE:	DATE:						

APPROVED	PM	PD	PREPARED
ВҮ	REVIEWD	REVIEWD	Ву

Prepared By:

LEADER TIME SRL

VIA MONS PROSDOCIMI N°27,

BREGANZA (VI)

ITALY

• This specification is subject to change without notice. Please contact Leader Time or it's representative before designing your product based on this specification.

Doc No ·

Revision Status

Version	Revise Date	Page	Content	Modified By
Ver. 1.0	2008.04.06		First Issued	
Ver. 1.1	2008.05.30		LCD thickness change to 2.0mm MAX	
Ver. 1.2	2008.07.30		R9-R10 assembly value 100 Ohm	
		_		
			× Y	
		1	Y	
	7			
	, and the second			

Doc No ·

Table of Contents

No. Contents	Page
1. FEATURES	4
2. MECHANICAL SPECIFICATIONS	4
3. ELECTRICAL SPECIFICATIONS	4
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM	6
5. TIMING CHARACTERISTICS	7
6. COMMAND LIST	8
7. CHARACTER GENERATOR ROM	9
8. QUALITY SPECIFICATIONS	10
9. RELIABILITY	15
10. HANDLING PRECAUTION	16
11. OUTLINE DIMENSION	17

1. Features

The features of LCD are showed as follows

* Display mode : FSTN, Transflective, Positive

* Controller/Driver IC : CS0066(English-Japanese font)/CS0065

* Display format : 16 X 2Characters

* Interface Input Data : 8-Bit

* Driving Method : 1/16Duty, 1/5 Bias

* Viewing Direction : 6 O'clock

* Backlight : LED Unit (White)

*Sample NO. : EX1602F0FSW6B-1.1/080529

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Module Size	59(W) x29.3(H) x5.5(T)MAX	mm
Viewing Area	52(W) x 15(H)	mm
Activity Area	46.7(W)x9.84(H)	mm
Character Font	5X7 Dots with cursor	-
Character Size	2.45(W)x4.67(H)	mm
Character Pitch	2.95(W)x5.17(H)	mm
Dot Size	0.45(W)x0.54(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Item	Symbol	Sta			
item	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage For Logic	Vdd	-0.3	-	7	V
Supply Voltage For LCD Drive	V _{LCD} = V _{DD} -V ₀	0	-	13	V
Input Voltage	Vin	-0.3	-	VDD+0.3	V
Operating Temp.	Тор	-20	-	+70	°C
Storage Temp.	Tst	-30	-	+80	°C

^{*.} NOTE: The response time will be extremely slow when the operating temperature is around -10°C, and the back ground will become darker at high temperature operating.

3-2 ELECTICAL CHARACTERISTICS

ltem		Item Symbol Condition		Min.	Тур.	Max.	Unit
Logic supply Voltage		VDD - Vss	Ta = 25 °C	-	5.0	-	\ \
LCD Dri	LCD Drive			-	4.0	-	V
Input Voltage	"H" Level	V _{IH}	VDD=5V ± 5%	2.5	-	Vdd	V
"L" Level		V _{IL}	VDD=0 V = 070	-0.3	-	0.6	V
Frame Frequency		f _{FLM}	VDD = 5V	-	78.1	-	Hz
Current Cons	umption	I _{DD}	VDD - V0= 4.0V	-	1.0	ı	mA

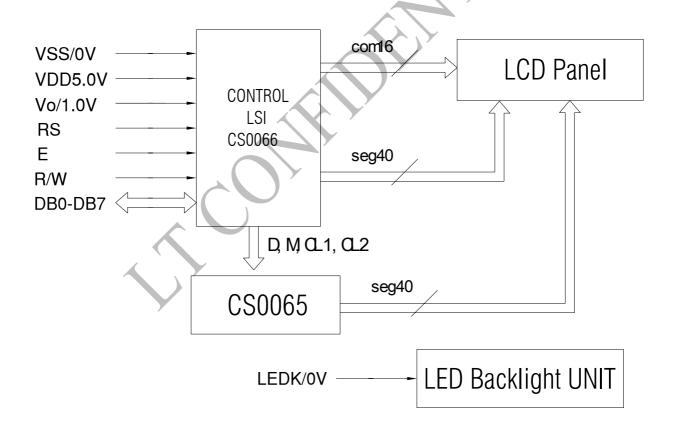
3-3 BACKLIGHT

3-3-1. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF			-	60	mA
Reverse Voltage	VR	Ta = 25 °C	-	-	5	V
Power Dissipation	PD)-	-	192	mW

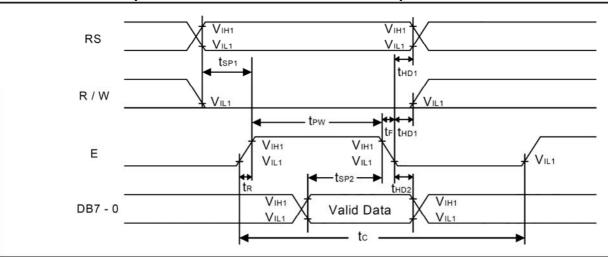
3-3-2. Electrical-optical Characteristics

Item	Symbol Condition Min.		Min.	Тур.	Max.	Unit
Forward Voltage	VF	If=60mA Ta = 25 °C	2.9	3.2	3.4	V
Average Luminous Intens	sity Iv	Ta = 25 °C If=60mA	200	-	-	cd/m ²

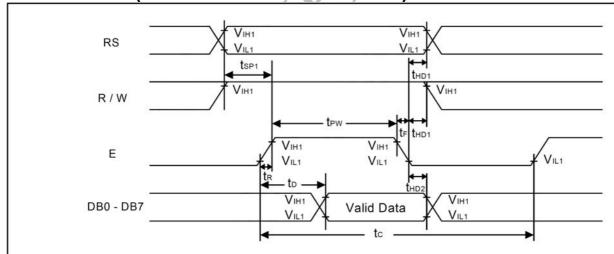

The brightness is measured without LCD panel

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

4-1 INTERFACE PIN FUNCTION DESCRIPTION


PIN NO.	SYMBOL	FUNCIONS
1	LED K	Cathode of the backlight unit/0V
2	VSS	Ground
3	VDD	Supply voltage for logical circuit
4	V0	Supply voltage for LCD driving
5	RS	A signal for selecting registers. 1: Data Register 0: Instruction Register
6	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
7	E	Enable signal for reading or writing data.
8-15	DB0-DB7	8 Bit Data Bus

4-2 BLOCK DIAGRAM


5. TIMING CHARACTERISTICS

5-1. Write mode (Write Data from MPU to CS0066)

0			Limit			T
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
E Cycle Time	tc	400		-	ns	Pin E
E Pulse Width	t _{PW}	150	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E
Address Setup Time	t _{SP1}	30	0	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	10	323		ns	Pins: RS, R/W, E
Data Setup Time	t _{SP2}	40	-	LIVIT	ns	Pins: DB0 - DB7
Data Hold Time	t _{HD2}	10	-		ns	Pins: DB0 - DB7

5-2. Read mode(Read Data from CS0066 to MPU)

Chavastaviation	Complete		Limit		Unit	Took Condition
Characteristics	Symbol	Min.	Тур.	Max.	Oilit	Test Condition
E Cycle Time	tc	400	171	-	ns	Pin E
E Pulse Width	t _W	150	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F		-	25	ns	Pin E
Address Setup Time	t _{SP1}	30	121	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	10	-	144	ns	Pins: RS, R/W, E
Data Output Delay Time	t _D	-	- 1	100	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

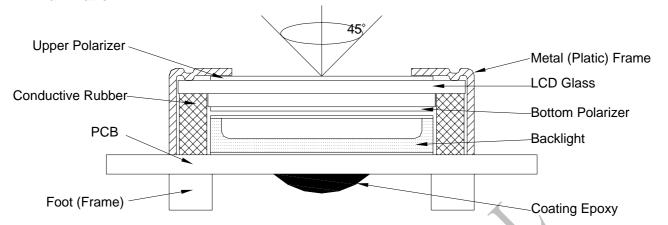
Doc. No.:

6. COMMAND LIST

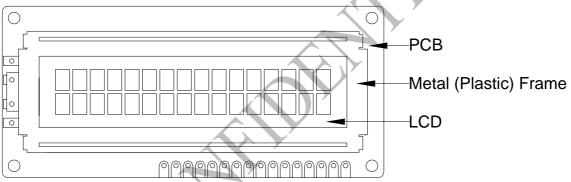
1,27,200,204,400,				Ins	structi	on Co	ode				D		ecution til emp = 25°	
Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Fosc= 190KHz	Fosc= 270KHz	Fosc= 350KHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	2.16ms	1.52ms	1.18ms
Return Home	0	0	0	0	0	0	0	0	1		Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	2.16ms	1.52ms	1.18ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction and enable the shift of entire display	53µs	38µs	29μs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor(C), and blinking of cursor(B) on/off control bit.	53μs	38µs	29µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	12		Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	53μs	38μs	29μs
Function Set	0	0	0	0	1	DL	Z	F	-	3.0	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5x10 dots/5x8 dots)	53µs	38µs	29µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	53µs	38µs	29µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	53µs	38µs	29μs
Read Busy Flag and Address Counter	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.			
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	53µs	38µs	29μs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	53µs	38µs	29μs

Note1: "--": don't care

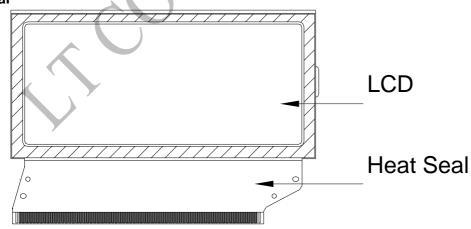
Note2: In the operation condition under -20°C ~ 75°C, the maximum execution time for majority of instruction sets is 100us, except two instructions, "Clear Display" and "Return Home", in which maximum execution time can take up to 4.1ms.

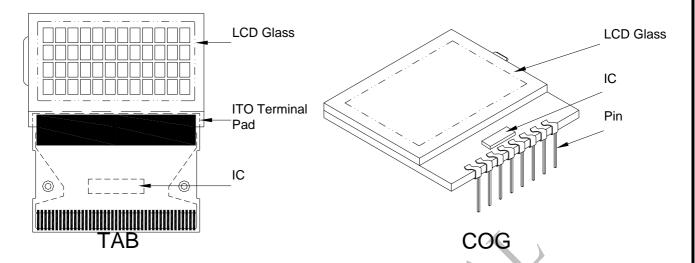

7.CHARACTER GENERATOR ROM(CS0066)

	· ·		<u> </u>		· · · ·	<u> </u>		111/6								
Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL.	НГНН	HHLL	нніл	HHHL	нннн
LLLL																
LLLH																
LLHL																
LLHH																
LHLL																
LHLH																
LHHL																
гннн																
HLLL																
HLLH																
HLHL																ш
нгнн																
HHLL																
ннгн																
нннг																
нннн														•		


Doc. No.:

8. QUALITY SPECIFICATIONS


- 8 1. LCM Appearance and Electric inspection Condition
- 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.


- 2. View Angle: with in 45° around perpendicular line.
- 8-2. Definition
- 1. COB

2. Heat Seal

3. TAB and COG

8-3. Sampling Plan and Acceptance

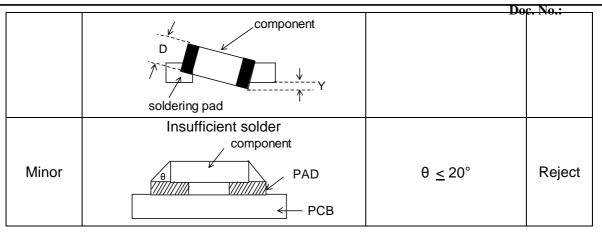
1. Sampling Plan

MIL - STD - 105E (||) ordinary single inspection is used.

2.Acceptance

Major defect: AQL = 0.25%Minor defect: AQL = 0.65%

8-4. Criteria


1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing, extra, wrong component or wrong orientation		Reject
Minor	Component position shift component soldering pad	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt	Y > 1/3D	Reject

11/17

3. Metal (Plastic) Frame

o. Metal (1 la	istic) Frame	1		
Defect	Inspection Item	lı lı	nspection Standar	ds
Major	Crack / breakage	Any	ywhere	Reject
		W	L	Acceptable of Scratch
		w<0.1mm	Any	Ígnore
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1
		w <u>></u> 0.3mm ✓	Any	0
		with distance g	e criteria applicable reater than 5mm. on the back sid ignored.	
	_			Acceptable of Dents / Pricks
		Φ≤	2	
	Frame Dent , Prick	1.0<⊄	> <u><</u> 1.5mm	1
Minor	$\Phi = \frac{\Gamma + M}{2}$	1.5ι	mm<Φ	0
		/ pricks with dis	e criteria applicable tance greater than rick on the back s ignored	5mm [*]
Minor	Frame Deformation	Excee	d the dimension of	drawing
Minor	Metal Frame Oxidation		Any rust	

4. Flexible Film Connector (FFC)

Defect	Insp	ection Item	Inspection Standards			
Minor	Tilted soldering		Within the angle +5°	Acceptable		
Minor	Uneven solder joint /bump			Reject		
			Expose the conductive line	Reject		
Minor	Hole	$\Phi = \frac{\Gamma + M}{2}$	Φ > 1.0mm	Reject		

			Doc. No.:
Minor	Position shift	Y > 1/3D	Reject
IVIIIIOI	*	X > 1/2Z	Reject

5. Screw

Defect	Inspection Item	Inspection Standards		
Major	Screw missing/loosen		Reject	
Minor	Screw oxidation	Any rust	Reject	
Minor	Screw deformation	Difficult to accept screw driver	Reject	

6. Heatseal $\ \ \mathsf{TCP}\ \ \mathsf{FPC}$

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ > 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift	Y > 1/3D	Reject
IVIII IOI	X X	X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards					
		Acceptable number of units					
		Ф <u><</u> 0.10mm	Ignore				
		0.10<Φ <u><</u> 0.15mm	2				
Minor	LED dirty, prick	0.15<Φ <u><</u> 0.2mm	1				
	Y	Φ >0.2mm	0				
		The distance between any two spots should be ≥5mm Any spot/dot/void outside of viewing area is acceptable					
Minor	Protective film tilt	Not fully cover LCD Reje					
Major	COG coating	Not fully cover ITO circuit	Reject				

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

Doc. No.:

9. Inspection Specification of LCD

Defect	Insp	ect Item		<u>In</u>	spection		andards		
		* Glass Scratch	W		0.03	0.0	0.05	5 \	N>0.05
N /1: =	Lines D. C. C.	* Polarizer Scratch	L ACC	L	<5	1	L<3		Any
Minor	Linear Defect	* Fiber and Linear	ACC. NO.		1		1		Reject
		material	Note	L is the le	ngth and W	is th	e width of t	he de	efect
		* Foreign material		Φ <u><</u> 0.1	0.1<Φ <u><</u> 0	.15 ().15<Φ <u><</u> 0.	2	Φ>0.2
Minor	Black Spot and Polarizer	between glass and polarizer or glass and glass		3EA / 100mm ²	2		1		0
Pricked	 Polarizer hole or protuberance by external force 	Note		Φ is the average diameter of the defect. Distance between two defects > 10mm.					
		* Unobvious	•	Φ <u><</u>	0.3	0.3	<Φ <u><</u> 0.5	0.	.5<Ф
White Spot	transparant foreign material between	NO.	3EA / 1	00mm ²		1		0	
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass	Note		verage dia between tw	4			
			Φ	Φ <u><</u> 0.10	0.10<Φ <u><</u>	0.20	0.20<Ф <u><</u>	0.25	Φ>0.25
	<u>w</u>	ACC. NO.	3EA / 100mm²	2 1				0	
Minor	Segment Defect	† <u> W - </u>		W is more than 1/2 segment width				Reject	
	20.00.		Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm					
		W H		Distance		o deli	ect is Tullii	11	
			Φ	Φ <u><</u> 0.10	0.10<Φ <u><</u> 0.20				Φ>0.25
Minor	Protuberant	w	W	Glue	W <u><</u> 1/2 S W <u><</u> 0.2				Ignore
IVIII IOI	Segment	$\Phi = (L + W)/2$	ACC. NO.	3EA / 100mm²	2		1		0
			1. Seg	ment					
			Е	B <u>≤</u>	<u><</u> 0.4mm	0.4 <e< td=""><td>3<u><</u>1.0mm</td><td>B></td><td>1.0mm</td></e<>	3 <u><</u> 1.0mm	B>	1.0mm
	Assembly		B-	·A B-	A<1/2B	B-	A<0.2	B-A	A<0.25
Minor	Mis-alignment		Judge		ceptable	Acc	eptable	Acc	eptable
			2. Dot Matrix						_
								Reject	
Minor	Stain on LCD Panel Surface		or a	similar one	ins can be e. Otherwi ack spot" ar	se, ji	udged acc	th a sordin	soft cloth g to the

9. RELIABILITY

NO.	Item	Condition	Criterion
1	High Temperature Operating	70°C, 96Hrs	No defect in cosmetic and operational functi on allowable. Total current Consumption should be below doub le of initial value.
2	Low Temperature Operating	-20°C, 96Hrs	
3	High Humidity	60°C, 90%RH, 96Hrs	
4	High Temperature Storage	80°C, 96Hrs	
5	Low Temperature Storage	-30°C, 96Hrs	
6	Vibration	Random wave	
		10 ~ 100Hz	
		Acceleration: 2g	
		2 Hrs per direction(X,Y,Z)	
7	Thermal Shock	-20°C to 25°C to 70°C	
		(60Min) (5Min) (60Min)	
		16Cycles	
8	ESD Testing	Contract Discharge Voltage: +1 ~ 5kV and -1 ~ -5kV	There will be discharged ten times at every discharging voltage cycle. The voltage gap is 1kV.
		Air Discharge Voltage: +1 ~ 8kV and -1 ~ -8kV	

Note: 1) Above conditions are suitable for Leader Time standard products.

2) For restrict products, the test conditions listed as above must be revised.

Doc. No.:

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Ketone
- Aromatics
- (3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

(4) Packaging

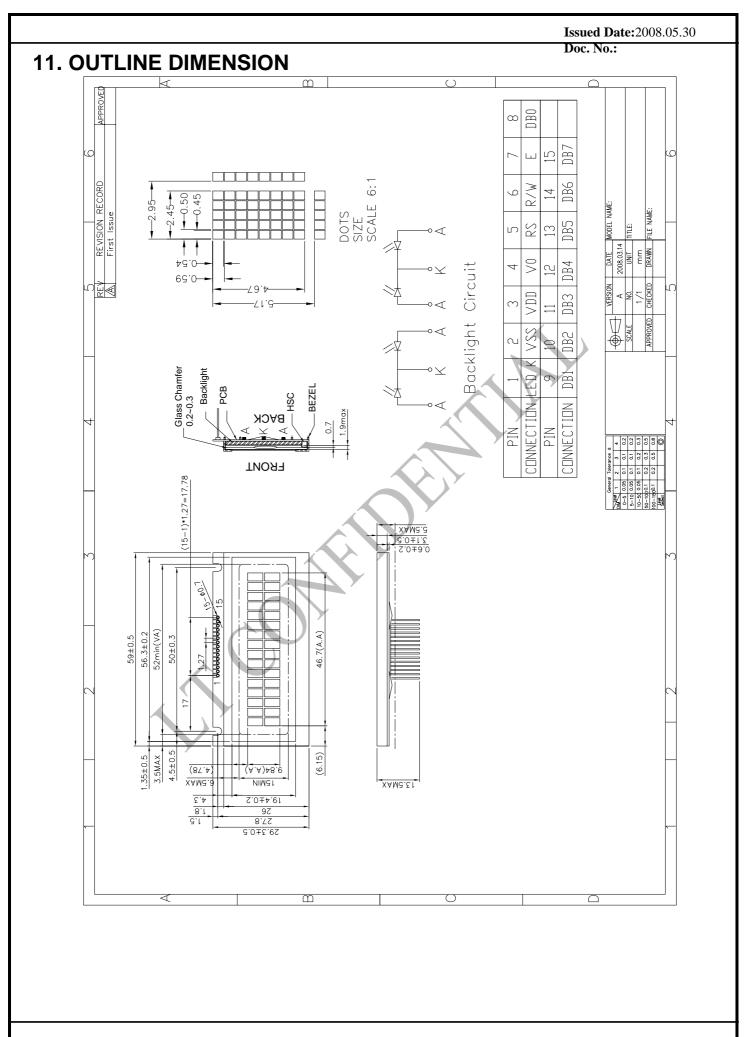
- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

(5) Caution for operation

- It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 50%RH or less is reequired.

(6) Storage


- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.

Which should be burned up later.

When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

